de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

How Sensitive Is the Human Visual System to the Local Statistics of Natural Images?

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84519

Gerhard,  HE
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84314

Wichmann,  FA
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83805

Bethge,  M
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gerhard, H., Wichmann, F., & Bethge, M. (2012). How Sensitive Is the Human Visual System to the Local Statistics of Natural Images?. Poster presented at Bernstein Conference 2012, München, Germany.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B646-B
Zusammenfassung
A key hypothesis in sensory system neuroscience is that sensory representations are adapted to the statistical regularities in sensory signals and thereby incorporate knowledge about the outside world. Supporting this hypothesis, several probabilistic models of local natural image regularities have been proposed that reproduce neural response properties. Although many such physiological links have been made, these models have not been linked directly to visual sensitivity. Previous psychophysical studies focus on global perception of large images, so little is known about sensitivity to local regularities. We present a new paradigm for controlled psychophysical studies of local natural image regularities and use it to compare how well such models capture perceptually relevant image content. To produce image stimuli with precise statistics, we start with a set of patches cut from natural images and alter their content to generate a matched set of patches whose statistics are equally likely under a model’s assumptions. Observers have the task of discriminating natural patches from model patches in a forced choice experiment. The results show that human observers are remarkably sensitive to local correlations in natural images and that no current model is perfect for patches as small as 5 by 5 pixels or larger. Furthermore, discrimination performance was accurately predicted by model likelihood, an information theoretic measure of model efficacy, which altogether suggests that the visual system possesses a surprisingly large knowledge of natural image higher-order correlations, much more so than current image models. We also perform three cue identification experiments where we measure visual sensitivity to selected natural image features. The results reveal several prominent features of local natural image regularities including contrast fluctuations and shape statistics.