de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stochastic hybrid 3D matrix: learning and adaptation of electrical properties

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84221

Berzina T, Gorshkov K, Camorani P, Pucci A, Ricci L, Ruggeri G, Sigala,  R
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84202

Schüz,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Erokhin, V., Berzina T, Gorshkov K, Camorani P, Pucci A, Ricci L, Ruggeri G, Sigala, R., & Schüz, A. (2012). Stochastic hybrid 3D matrix: learning and adaptation of electrical properties. Journal of Materials Chemistry, 22(43), 22881-22887. doi:10.1039/C2JM35064E.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B62C-7
Zusammenfassung
Memristive devices are electronic elements with memory properties. This feature marks them out as possible candidates for mimicking synapse properties. Development of systems capable of performing simple brain operations demands a high level of integration of elements and their 3D organization into networks. Here, we demonstrate the formation and electrical properties of stochastic polymeric matrices. Several features of the network revealed similarities with those of the nervous system. In particular, applying different training protocols, we obtained two kinds of learning comparable to the “baby” and “adult” learning in animals and humans. To mimic “adult” learning, multi-task training was applied simultaneously resulting in the formation of few parallel pathways for a given task, modifiable by successive training. To mimic “baby” learning (imprinting), single task training was applied at one time, resulting in the formation of multiple parallel signal pathways, scarcely influenced by successive training.