de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Shared Control: Balancing Autonomy and Human Assistance with a Group of Quadrotor UAVs

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84181

Secchi C, Ryll,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84174

Robuffo Giordano,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Franchi, A., Secchi C, Ryll, M., Bülthoff, H., & Robuffo Giordano, P. (2012). Shared Control: Balancing Autonomy and Human Assistance with a Group of Quadrotor UAVs. IEEE Robotics Automation Magazine, 19(3), 57-68. doi:10.1109/MRA.2012.2205625.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B62A-B
Abstract
Robustness and flexibility constitute the main advantages of multiple-robot systems with respect to single-robot ones as per the recent literature. The use of multiple unmanned aerial vehicles (UAVs) combines these benefits with the agility and pervasiveness of aerial platforms [1], [2]. The degree of autonomy of the multi-UAV system should be tuned according to the specificities of the situation under consideration. For regular missions, fully autonomous UAV systems are often appropriate, but, in general, the use of semiautonomous groups of UAVs, supervised or partially controlled by one or more human operators, is the only viable solution to deal with the complexity and unpredictability of real-world scenarios as in, e.g., the case of search and rescue missions or exploration of large/cluttered environments [3]. In addition, the human presence is also mandatory for taking the responsibility of critical decisions in high-risk situations [4].