de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Rat brain MRI at 16.4T using a capacitively tunable patch antenna in combination with a receive array

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84213

Shajan,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83973

Hoffmann,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83793

Balla,  DZ
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84187

Deelchand DK, Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Shajan, G., Hoffmann, J., Balla, D., Deelchand DK, Scheffler, K., & Pohmann, R. (2012). Rat brain MRI at 16.4T using a capacitively tunable patch antenna in combination with a receive array. NMR in Biomedicine, 25(10), 1170–1176. doi:10.1002/nbm.2786.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B5B4-A
Abstract
For MRI at 16.4T, with a proton Larmor frequency of 698 MHz, one of the principal RF engineering challenges is to generate a spatially homogeneous transmit field over a larger volume of interest for spin excitation. Constructing volume coils large enough to house a receive array along with the subject and to maintain the quadrature symmetry for different loading conditions is difficult at this frequency. This calls for new approaches to RF coil design for ultra-high field MR systems. A remotely placed capacitively tunable patch antenna, which can easily be adjusted to different loading conditions, was used to generate a relatively homogeneous excitation field covering a large imaging volume with a transversal profile similar to that of a birdcage coil. Since it was placed in front of the animal, this created valuable free space in the narrow magnet bore around the subject for additional hardware. To enhance the reception sensitivity, the patch antenna was combined with an actively detunable 3-channel receive coil array. In addition to increased SNR compared to a quadrature transceive surface coil, we were able to get high quality gradient echo and spin-echo images covering the whole rat brain.