de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84641

Cherian,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons76142

Sra,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cherian, A., Sra, S., Banerjee, A., & Papanikolopoulos, N. (2012). Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence, Epub ahead. doi:10.1109/TPAMI.2012.259.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B542-C
Zusammenfassung
Covariance matrices have found success in several computer vision applications, including activity recognition, visual surveillance, and diffusion tensor imaging. This is because they provide an easy platform for fusing multiple features compactly. An important task in all of these applications is to compare two covariance matrices using a (dis)similarity function, for which the common choice is the Riemannian metric on the manifold inhabited by these matrices. As this Riemannian manifold is not flat, the dissimilarities should take into account the curvature of the manifold. As a result such distance computations tend to slow down, especially when the matrix dimensions are large or gradients are required. Further, suitability of the metric to enable efficient nearest neighbor retrieval is an important requirement in the contemporary times of big data analytics. To alleviate these difficulties, this paper proposes a novel dissimilarity measure for covariances, the Jensen-Bregman LogDet Divergence (JBLD). This divergence enjoys several desirable theoretical properties, at the same time is computationally less demanding (compared to standard measures). We propose a K-Means clustering algorithm on JBLD. We demonstrate the superior performance of JBLD on covariance datasets from several computer vision applications.