de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Thermodynamics as a theory of decision-making with information-processing costs

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84121

Ortega,  PA
Research Group Sensorimotor Learning and Decision-Making, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83827

Braun,  DA
Research Group Sensorimotor Learning and Decision-Making, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Ortega, P., & Braun, D. (2013). Thermodynamics as a theory of decision-making with information-processing costs. Proceedings of the Royal Society of London A, Epub ahead. doi:10.1098/rspa.2012.0683.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B4BE-D
Abstract
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here, we propose a thermodynamically inspired formalization of bounded rational decision-making where information processing is modelled as state changes in thermodynamic systems that can be quantified by differences in free energy. By optimizing a free energy, bounded rational decision-makers trade off expected utility gains and information-processing costs measured by the relative entropy. As a result, the bounded rational decision-making problem can be rephrased in terms of well-known variational principles from statistical physics. In the limit when computational costs are ignored, the maximum expected utility principle is recovered. We discuss links to existing decision-making frameworks and applications to human decision-making experiments that are at odds with expected utility theory. Since most of the mathematical machinery can be borrowed from statistical physics, the main contribution is to re-interpret the formalism of thermodynamic free-energy differences in terms of bounded rational decision-making and to discuss its relationship to human decision-making experiments.