de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Motion Control of the CyberCarpet Platform

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84174

Mattone R, Robuffo Giordano,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

De Luca, A., Mattone R, Robuffo Giordano, P., Ulbrich H, Schwaiger M, van Bergh M, Koller-Meier, E., & van Gool, L. (2013). Motion Control of the CyberCarpet Platform. IEEE Transactions on Control Systems Technology, 21(2), 410-427. doi:10.1109/TCST.2012.2185051.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B4BA-6
Abstract
The CyberCarpet is an actuated platform that allows unconstrained locomotion of a walking user for Virtual Reality exploration. The platform consists of a linear treadmill covered by a ball-array carpet and mounted on a turntable, and is equipped with two actuating devices for linear and angular motion. The main control objective is to keep the walker close to the platform center in the most natural way, counteracting his/her voluntary motion while satisfying perceptual constraints. The motion control problem for this platform is not trivial since the system kinematics is subject to a nonholonomic constraint. In the first part of the paper we describe the kinematic control design devised within the CyberWalk project, where the linear and angular platform velocities are used as input commands and feedback is based only on walker's position measurements obtained by an external visual tracking system. In particular, we present a globally stabilizing control scheme that combines a feedback and a feedforward action, based on a disturbance observer of the walker's intentional velocity. We also discuss possible extensions to acceleration-level control and the related assessment of dynamic issues affecting a walker during his/her motion. The second part of the paper is devoted to the actual implementation of the overall system. As a proof of concept of a final full-scale platform, the mechanical design and realization of a small-scale prototype of the CyberCarpet is presented, as well as the visual localization method used to obtain the human walker's position on the platform by an overhead camera. To validate the proposed motion control design, experimental results are reported and discussed for a series of motion tasks performed using a small tracked vehicle representative of a moving user.