de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A 16-channel dual-row transmit array in combination with a 31-element receive array for human brain imaging at 9.4 T

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84213

Shajan,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83973

Kozlov M, Hoffmann,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84187

Turner R, Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shajan, G., Kozlov M, Hoffmann, J., Turner R, Scheffler, K., & Pohmann, R. (2013). A 16-channel dual-row transmit array in combination with a 31-element receive array for human brain imaging at 9.4 T. Magnetic Resonance in Medicine, Epub ahead. doi:10.1002/mrm.24726.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B4A6-1
Zusammenfassung
Purpose Arranging transmit array elements in multiple rows provides an additional degree of freedom to correct B1+ field inhomogeneities and to achieve whole-brain excitation at ultrahigh field strengths. Receive arrays shaped to the contours of the anatomy increase the signal-to-noise ratio of the image. In this work, the advantages offered by the transmit and receive array techniques are combined for human brain imaging at 9.4 T. Methods A 16-element dual-row transmit array and a 31-element receive array were developed. Based on an accurate numerical model of the transmit array, the deposited power was calculated for different head sizes and positions. The influence of the receive array on the transmit field was characterized. Parallel imaging performance and signal-to-noise ratio of the receive array were evaluated. Results On average, a two fold increase in signal-to-noise ratio was observed in the whole-brain volume when compared with a 16-channel elliptic microstrip transceiver array. The benefits of combining the two arrays, B1+ shimming in three directions and high receive sensitivity, are demonstrated with high-resolution in vivo images. Conclusion The dual-row transmit array provides whole-brain coverage at 9.4 T, which, in combination with the helmet-shaped receive array, is a valuable radio frequency configuration for ultra-high field magnetic resonance imaging of the human brain.