Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Gradient Induced Sideband Artifacts in non Water-Suppressed Proton CSI of the Human Brain at 9.4 T

MPG-Autoren
/persons/resource/persons84408

Chadzynski,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84213

Shajan,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chadzynski, G., Pohmann, R., Shajan, G., Kolb, R., Klose, U., & Scheffler, K. (2013). Gradient Induced Sideband Artifacts in non Water-Suppressed Proton CSI of the Human Brain at 9.4 T. Poster presented at 21st Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2013), Salt Lake City, UT, USA.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B496-7
Zusammenfassung
CSI without water suppression offers several advantages, like the possibility to use the water signal for absolute quantification. However, the unsuppressed spectra are hampered by gradient induced sidebands, which have to be removed before the quantification. Despite known difficulties (shorter T2 relaxation time, larger B0 and B1 inhomogeneities), previous studies demonstrated that CSI at ultra-high magnetic field is feasible. The aim of this study was to verify the feasibility of short TE proton CSI on the human brain without water suppression at the field strength of 9.4 T and to examine the influence of sidebands on the measured spectra.