de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Not so loosely bound rare gas atoms: finite-temperature vibrational fingerprints of neutral gold-cluster complexes

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21549

Ghiringhelli,  Luca M.
Theory, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21579

Gruene,  Philipp
Molecular Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21831

Lyon,  Jonathan T.
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Department of Natural Sciences, Clayton State University;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21859

Meijer,  Gerard
Molecular Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21506

Fielicke,  André
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Institut für Optik und Atomare Physik, Technische Universität Berlin;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

RANL-979HQW_20130430.pdf
(beliebiger Volltext), 2MB

1367-2630_15_8_083003.pdf
(Verlagsversion), 848KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ghiringhelli, L. M., Gruene, P., Lyon, J. T., Rayner, D. M., Meijer, G., Fielicke, A., et al. (2013). Not so loosely bound rare gas atoms: finite-temperature vibrational fingerprints of neutral gold-cluster complexes. New Journal of Physics, 15(8): 083003. doi:10.1088/1367-2630/15/8/083003.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-14E9-4
Zusammenfassung
We present an experimental and theoretical study of the structure of small, neutral gold clusters – Au3, Au4, and Au7 – “tagged” by krypton atoms. Infrared (IR) spectra of AuN·KrM complexes formed at 100 K are obtained via far-IR multiple photon dissociation in a molecular beam. The theoretical study is based on a statistical (canonical) sampling of the AuN·KrM complexes through ab initio molecular dynamics using density-functional theory in the generalized gradient approximation, explicitly corrected for long-range van-der-Waals interactions. The choice of the functional is validated against higher-level first-principle methods. Thereby finite-temperature theoretical vibrational spectra are obtained that are compared with the experimental spectra. This enables us to identify which structures are present in the experimental molecular beam for a given cluster size. For Au2, Au3, and Au4, the predicted vibrational spectra of the Kr-complexed and pristine species differ. For Au7, the presence of Kr influences the vibrational spectra only marginally. This behavior is explained in terms of the formation of a weak chemical bond between Kr and small gold clusters that localizes the Kr atom at a defined adsorption site, whereas for bigger clusters the vdW interactions prevail and the Kr adatom is delocalized and orbits the gold cluster. In all cases, at temperatures as low as T = 100 K, vibrational spectra already display a notable anharmonicity and show, in comparison with harmonic spectra, different position of the peaks, different intensities and broadenings, and even the appearance of new peaks. 2