de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Uniqueness of steady-state solutions for thermodynamically consistent Becker-Döring models

MPG-Autoren

Ssemaganda,  V.
Otto von Guericke University Magdeburg, IAN;
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86184

Holstein,  K.
Otto von Guericke University Magdeburg, IAN;
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ssemaganda, V., Holstein, K., & Warnecke, G. (2011). Uniqueness of steady-state solutions for thermodynamically consistent Becker-Döring models. Journal of Mathematical Physics, 52(8), 083304. doi:10.1063/1.3626943.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-A5FD-7
Zusammenfassung
Dreyer and Duderstadt [J. Stat. Phys. 123, 1 (2006)]10.1007/s10955-006-9024-z proposed a modification of the standard mass-conserving Becker-Döring model. In this paper we solve for steady-state solutions to two versions of the Becker-Döring model. One is the modified mass-conserving model introduced by Dreyer and Duderstadt. The second one, which is a new version, is a modification of the so called constant free molecule Becker-Döring model. For practical purposes, there is a maximum cluster of size ν allowed in the system. For each version we study the two known truncations to finite system size. One is given by a zero flux to larger cluster sizes out of the system. The second one is obtained by setting the number of clusters larger than ν to zero. For each model and each truncation we determine the unique steady states by studying the null space of the flux matrix. The zero flux truncation gives equilibrium steady-states whereas the zero particle number truncation leads to non-equilibrium steady-states. © 2011 American Institute of Physics