de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Approximating Automata and Discrete Control for Continuous Systems : Two Examples from Process Control

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86212

Raisch,  J.
Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Raisch, J., Klein, E., Meder, C., Itigin, A., & O'Young, S. (1999). Approximating Automata and Discrete Control for Continuous Systems: Two Examples from Process Control. In P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, & S. Sastry (Eds.), Hybrid Systems V (pp. 279-303). Berlin: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-A29B-A
Zusammenfassung
A standard problem in hybrid control systems theory is to design discrete, or symbolic, feedback for a given continuous plant. When specifications are discrete, this problem can be solved by first approximating the continuous plant model by a (nondeterministic) automaton, and then synthesizing discrete (supervisory) control for the automaton. A necessary condition is that the approximation behaviour contains the behaviour of the underlying continuous plant model. Then, any controller forcing the approximation to obey the specifications will also force the continuous model to satisfy the specifications. We use a version of this approach which allows adjustment of approximation accuracy to address two simple process control problems: supervisory control of a three tank laboratory experiment and safety enforcement for an evaporator. In both cases, the entire design process is carried through: we first determine a suitable abstraction, compute the minimally restrictive supervisor, and then present examples for closed loop trajectories. © Springer, Part of Springer Science+Business Media [accessed 2014 April 1st]