de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Production of butyl acetate by catalytic distillation : reaction kinetics and process design studies

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86298

Gangadwala,  J.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86489

Stein,  E.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Gangadwala, J., Kienle, A., Stein, E., & Mahajani, S. (2003). Production of butyl acetate by catalytic distillation: reaction kinetics and process design studies. In ISMR3 - CCRE18: joint research symposium of the 3rd International Symposium on Multifunctional Reactors and the 18th Colloquia on Chemical Reaction Engineering (pp. 191-194).


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-A021-A
Abstract
This paper studies reactive distillation for the synthesis of n-butyl acetate from n-butanol esterification with acetic acid over Amberlyst -15. This study is carried out to influence the unwanted side product dibutylether formation, produced by butanol dehydration. First of all, activity based intrinsic reaction kinetics for the main reaction (esterification) and the side reaction (etherification) have been developed. Effect of various parameters such as temperature, mole ratio, catalyst loading and catalyst particle size was studied. The intrinsic kinetic parameters related to Pseudohomogeneous (PH), Eley-Rideal (RE), Langmuir Hinshelwood Hougen Watson (LHHW), and modified LHHW (ML) models were developed. Good agreement between the model predictions and experimental data were obtained. For the main reaction RE model or modified LHHW model and for the side reaction LHHW model are appropriate representations of intrinsic kinetics. The developed rate expression were then used for the simulation based design of reactive distillation column for the production of butyl acetate with the goal of eliminating the side product formation and achieving high purity of desired product butyl acetate. A simple equilibrium stage, steadystate reactive distillation column model was developed and validated using expeimental data from the literature. The following column configurations are invesigated: (a) column with non - reactive rectifying section and reactive stripping section (b) column with non - reactive rectifying section, non - reactive stripping section and reactive middle section; and (c) conventional distillation column with pump around reactor. For each configuration, effect of design parameters such as, reboiler heat duty, catalyst loading, catalyst section length and location, and feed stage location were investigated with the objective to achieve desired goal.