de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multiple steady states in two-phase reactors under boiling conditions

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86513

Waschler,  R.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86437

Pushpavanam,  S.
Dep. of Chemical Engineering, Indian Institute of Tech., Madras, Chennai, India;
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Waschler, R., Pushpavanam, S., & Kienle, A. (2003). Multiple steady states in two-phase reactors under boiling conditions. Chemical Engineering Science, 58, 2203-2214. doi:10.1016/S0009-2509(03)00083-6.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-A003-E
Zusammenfassung
In this paper, we analyze the nonlinear behavior of two–phase reactors under boiling conditions. First we focus on a simple nth-order reaction of the form A -> B, which allows a rigorous analytical treatment. Three necessary conditions for the existence of multiple steady states have been identified: the reactant A has to be the light–boiling component, the difference in boiling point temperatures between the reactant A and the product B has to be sufficiently large, and the order of the reaction has to be less than some physical parameter alpha. This parameter alpha can be interpreted as a measure for the phase–equilibrium–driven self–inhibition of the reaction mechanism. Thus, we have found an elegant explanation for the occurrence of multiplicities. Analytical and therefore general quantitative criteria identifying the regions of multiplicity for the model system are presented. Practical relevance of our results is demonstrated by means of two examples, the Monsanto process for the production of acetic acid and the ethylene glycol reactive distillation system. © 2003 Elsevier Science Ltd. All rights reserved. [accessed 2014 March 28th]