Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Direct methanol fuel cell (DMFC) : analysis of residence time behaviour of anodic flow bed

MPG-Autoren
/persons/resource/persons86375

Krewer,  Ulrike
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86487

Song,  Y.
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86497

Sundmacher,  Kai
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Krewer, U., Song, Y., Sundmacher, K., John, V., Lübke, R., Matthies, G., et al. (2004). Direct methanol fuel cell (DMFC): analysis of residence time behaviour of anodic flow bed. Chemical Engineering Science, 59(1), 119-130. doi:10.1016/j.ces.2003.09.029.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-9EC7-5
Zusammenfassung
This paper studies the residence time behaviour and concentration distribution in a simplified rhomboidal DMFC anode flow bed by 3D numerical flow simulations and by experimental measurements. The rhomboidal DMFC anode flow bed and the applied volume flow are discussed with regard to data given in the literature. Simulations with CFX, based on Finite Volume Method, and MooNMD, based on Finite Element Method, show strongly similar results and the reliability of the computed residence time distributions (RTD) is proved by showing that they depend only slightly on parameters of the numerical schemes applied. The realisation of the RTD and concentration distribution measurements are described. Experimentally obtained RTD results are in good agreement with the numerical simulations. Also, the experimentally obtained concentration distribution inside the anode flow bed is very similar to the computed distribution. By analysing the RTDs and concentration distributions, the obtained results provided evidence of weaknesses of the flow bed design. Copyright © 2013 Elsevier B.V. All rights reserved. [accessed 2013 August 20th]