de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Electrochemical Membrane Reactor for Controlled Partial Oxidation of Hydrocarbons : Model and Experimental Validation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86413

Munder,  Barbara
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86522

Ye,  Yinmei
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
State Key Lab. of Chem. Eng., School of Chem. Eng. East China Univ. of Science and Tech., Shanghai, China;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86450

Rihko-Struckmann,  Liisa
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Helsinki University of Technology, Dep. of Chem. Eng., Espoo, Finnland;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86497

Sundmacher,  Kai
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Munder, B., Ye, Y., Rihko-Struckmann, L., & Sundmacher, K. (2004). Electrochemical Membrane Reactor for Controlled Partial Oxidation of Hydrocarbons: Model and Experimental Validation. In ICCMR-6: 6th International Conference on Catalysis in Membrane Reactors: Book of Abstract (pp. 68).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9E7D-D
Zusammenfassung
The yield of partial oxidation reactions of light hydrocarbons conducted in a catalytic tubular reactor can be significantly improved by distributing the oxygen feed along the reactor length via an inert membrane. In electrochemical membrane reactors (EMR), this is realized by feeding the oxygen across a dense ion conducting membrane to the adjacent porous catalytic layer. In comparison to other membrane reactor concepts, the oxygen flux is faradaically coupled to the external electric current and can therefore be easily controlled. In our contribution, we present a modular reactor model based on mass, charge, and energy balances as well as on various kinetic approaches. Particular focus is on modeling the porous catalyst layer (1D+1D approach) to account for the interaction of mass transport processes and complex kinetics. As model reaction, the selective oxidation of n-butane to maleic anhydride over a vanadyl pyrophosphate (VPO) catalyst is investigated in a lab scale tubular reactor. The results of steady state experiments for selectivity and yield are used to validate the model and to estimate kinetic parameters. The stationary and transient reactor behavior is simulated and analyzed as function of current density and Damköhler number.