de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86326

Hlushkou,  D.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hlushkou, D., Kandhai, D., & Tallarek, U. (2004). Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels. International Journal for Numerical Methods in Fluids, 46(5), 507-532. doi:10.1002/fld.765.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9D7F-2
Zusammenfassung
In this article we are concerned with an extension of the lattice-Boltzmann method for the numerical simulation of three-dimensional electroosmotic flow problems in porous media. Our description is evaluated using simple geometries as those encountered in open-channel microfluidic devices. In particular, we consider electroosmosis in straight cylindrical capillaries with a (non)uniform zeta-potential distribution for ratios of the capillary inner radius to the thickness of the electrical double layer from 10 to 100. The general case of hetergeneous zeta-potential distributions at the surface of a capillary requires solution of the following coupled equations in three dimensions: Navier-Stokes equation for liquid flow, Poisson equation for electrical potential distribution, and the Nernst-Planck equation for distribution of ionic species. The hydrodynamic problem has been treated with high efficiency by code parallelization through the lattice-Boltzmann method. For validation velocity fields were simulated in several microcapillary systems and good agreement with results predicted either theoretically or obtained by alternative numerical methods could be established. Results are also discussed with respect to the use of a slip boundary condition for the velocity field at the surface. Copyright © 2004 John Wiley & Sons, Ltd. [accessed 2013 November 27th]