de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Numerical Analysis of Higher-Order Singularities in Complex Chemical Process Models in ProMoT

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86373

Krasnyk,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons127401

Ginkel,  Martin
Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86397

Mangold,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Krasnyk, M., Ginkel, M., Mangold, M., & Kienle, A. (2005). Numerical Analysis of Higher-Order Singularities in Complex Chemical Process Models in ProMoT. In L. Puigjaner, & A. Espuña (Eds.), European Symposium on Computer Aided Process Engineering - 15 (pp. 223-228). Amsterdam: Elsevier.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9CA0-F
Zusammenfassung
In this contribution, a tool is presented that allows the continuation of singularities of higher codimension also for complex chemical process models. The tool is an extension of the process-modelling tool ProMoT. It allows creating analytically augmented systems for singularity points with currently codimension up to 2. Required higher order directional derivatives up to the third order are obtained analytically via an interface to the computer algebra system Maxima. © 2005 Elsevier B.V. All rights reserved. [accessed 2014 January 10th]