de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effect of Delay on the Stability of a Coupled Reactor-Flash System Sustaining an Elementary Non-isothermal Reaction

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Balasubramaniam, P., Pushpavanam, S., Kienle, A., & Balaraman, K. S. (2005). Effect of Delay on the Stability of a Coupled Reactor-Flash System Sustaining an Elementary Non-isothermal Reaction. Industrial and Engineering Chemistry Research, 44, 3619-3625. doi:10.1021/ie040005v.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-9C92-D
Abstract
In this work, we investigate the stability of a continuous stirred tank reactor (CSTR) coupled to an isothermal, isobaric flash. The coupling is through the recycle of the reactant-rich stream from the downstream flash unit to the upstream reactor. We consider the first-order irreversible reaction A -> B occurring non-isothermally in the CSTR. The main focus of this work is to investigate the effect of delay arising as a result of transportation lag from the reactor to the separator on the system stability. In the absence of delay, it has been clearly shown that the coupled system exhibits static and dynamic instability. The effect of delay on the stability of the coupled system is studied for the two classical control strategies: (i) The fresh feed flow rate, F₀, is flow controlled and the reactor effluent flow rate, F, is used to control the molar holdup in the reactor, M_R. (ii) The flow rate, F, is flow controlled, and F₀ is used to control M_R. It is shown that delay induces new regions of dynamic instability. The system switches from instability to stability and vice versa for these two control strategies as the delay is increased. © 2005 American Chemical Society [accessed 2014 January 9th]