de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multi-segment linear gradient optimization strategy based on resolution map in HPLC

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86480

Shan,  Y.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86530

Zhang,  W.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shan, Y., Zhang, W., Seidel-Morgenstern, A., Zhao, R., & Zhang, Y. (2006). Multi-segment linear gradient optimization strategy based on resolution map in HPLC. Science in China Series B: Chemistry, 49(4), 315-325. doi:10.1007/s11426-006-2004-y.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9B4A-A
Zusammenfassung
Based on the mechanism of chromatographic retention (the relationship between the retention of solute and the mobile phase conditions) and method of resolution map, several methods of optimizing multi-segment linear gradient elution conditions were proposed according to the different separation requirements of various samples. These methods were verified using literature data. Moreover, the advantages and disadvantages of these methods were compared. It was proved that the third method is a fast optimization method which is capable of separating all the components with relatively high resolution. © Springer, Part of Springer Science+Business Media [accessed 2013 November 27th]