de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coexistence in the Chemostat as a result of metabolic by-products

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86323

Heßeler,  J.
Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86468

Schmidt,  J. K.
Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86448

Reichl,  U.
Otto-von-Guericke-Universität Magdeburg;
Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86167

Flockerzi,  D.
Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Heßeler, J., Schmidt, J. K., Reichl, U., & Flockerzi, D. (2006). Coexistence in the Chemostat as a result of metabolic by-products. Journal of mathematical biology, 53(4), 556-584. doi:10.1007/s00285-006-0012-3.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9AF7-E
Zusammenfassung
Classical chemostat models assume that competition is purely exploitative and mediated via a common, limiting and single resource. However, in laboratory experiments with pathogens related to the genetic disease Cystic Fibrosis, species specific properties of production, inhibition and consumption of a metabolic by-product, acetate, were found. These assumptions were implemented into a mathematical chemostat model which consists of four nonlinear ordinary differential equations describing two species competing for one limiting nutrient in an open system. We derive classical chemostat results and find that our basic model supports the competitive exclusion principle, the bistability of the system as well as stable coexistence. The analytical results are illustrated by numerical simulations performed with experimentally measured parameter values. As a variant of our basic model, mimicking testing of antibiotics for therapeutic treatments in mixed cultures instead of pure ones, we consider the introduction of a lethal inhibitor, which cannot be eliminated by one of the species and is selective for the stronger competitor. We discuss our theoretical results in relation to our experimental model system and find that simulations coincide with the qualitative behavior of the experimental result in the case where the metabolic by-product serves as a second carbon source for one of the species, but not the producer. © Springer, Part of Springer Science+Business Media [accessed 2013 August 16th]