de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

State Estimation of a Molten Carbonate Fuel Cell by an Extended Kalman Filter

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86309

Grötsch,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86397

Mangold,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86481

Sheng,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grötsch, M., Mangold, M., Sheng, M., & Kienle, A. (2006). State Estimation of a Molten Carbonate Fuel Cell by an Extended Kalman Filter. In W. Marquardt, & C. Pantelides (Eds.), 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering (pp. 1161-1166). Amsterdam: Elsevier.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9AEB-A
Zusammenfassung
Industrial fuel cell stacks only provide very limited measurement information. To overcome this deficit, a state estimator for a molten carbonate fuel cell system is developed in this contribution. The starting point of the work is a rigorous spatially distributed model of the system. From this model a reduced model is derived by using a Galerkin method and the Karhunen Loève decomposition technique. An extended Kalman filter with a continuous time simulator part and a discrete time corrector part is designed on the basis of the reduced model. The filter is tested in simulations and experimentally. © 2006 Elsevier B.V. All rights reserved. [accessed 2014 January 9th]