de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Global bounds on optimal solutions in chemical process design

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86298

Gangadwala,  J.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Haus, U. U., Gangadwala, J., Kienle, A., Michaels, D., Seidel-Morgenstern, A., & Weismantel, R. (2006). Global bounds on optimal solutions in chemical process design. In M. Marquardt, & C. Pantelides (Eds.), 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering (pp. 155-160). Amsterdam: Elsevier.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9ACC-E
Zusammenfassung
In this paper a new approach for computing global bounds on optimal solutions of mixed-integer nonlinear programs is presented. These type of problems frequently arise in optimal design of chemical processes. The approach is based on a hierarchy of polyhedral relaxations leading to mixed-integer linear programs, which can be solved rigorously. Application is demonstrated for the optimal design of combined reaction distillation processes and for feasibility studies of simulated moving bed chromatographic processes. © 2006 Elsevier B.V. All rights reserved. [accessed 2014 January 9th]