de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Methods of state estimation for particulate processes

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86397

Mangold,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86491

Steyer,  Christiane
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86416

Niemann,  Björn
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86510

Voigt,  Andreas
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86497

Sundmacher,  Kai
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mangold, M., Steyer, C., Niemann, B., Voigt, A., & Sundmacher, K. (2006). Methods of state estimation for particulate processes. In W. Marquardt, & C. Pantelides (Eds.), 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering (pp. 1191-1196). Amsterdam: Elsevier.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9A98-2
Zusammenfassung
Determining property distributions of particles online by measurement is difficult in many cases, especially if the particles are in the nanometre range. An alternative may be state estimation techniques, which use information from process simulations in addition to the measurement signals. Two examples of state estimators for particulate processes are presented in this contribution. The first one is an extended Kalman filter based on a population balance model. The second one is a bootstrap filter based on a Monte Carlo simulation. © 2006 Elsevier B.V. All rights reserved. [accessed 2014 January 9th]