Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Modeling and analysis of a plant for the production of low density polyethylene

MPG-Autoren
/persons/resource/persons86313

Häfele,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Häfele, M., Kienle, A., Boll, M., & Schmidt, C.-U. (2006). Modeling and analysis of a plant for the production of low density polyethylene. Computers and Chemical Engineering, 31, 51-65. doi:10.1016/j.compchemeng.2006.05.001.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-9A86-A
Zusammenfassung
In this paper a detailed dynamic mathematical model of a plant for the production of low density polyethylene (LDPE) is derived. Besides the main part, a tubular reactor, the plant comprises compressors, heat exchangers and material recycles. The dynamic model for the overall system consists of differential, partial differential and algebraic equations. For the numerical solution with the simulator DIVA, this system is transformed into a system of differential and algebraic equations. For the transformation an adaptive finite difference scheme is used. With this mathematical model, the influence of the reactor wall and the influence of the material recycles on the plant dynamics is studied. In particular, it is shown that the reactor wall due to its high thermal capacity dominates the time constant of the stand alone reactor. By closing the material recycles the time constant is significantly increased. In addition, the recycles give rise to intricate nonlinear behavior. © 2006 Elsevier Ltd. All rights reserved [accessed 2014 January 8th]