Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Numerical simulation of electrokinetic microfluidics in colloidal system

MPG-Autoren
/persons/resource/persons86326

Hlushkou,  D.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hlushkou, D., Apanasovich, V., Seidel-Morgenstern, A., & Tallarek, U. (2006). Numerical simulation of electrokinetic microfluidics in colloidal system. Chemical Engineering Communications, 193(7), 826-839. doi:10.1080/00986440500267295.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-9A18-4
Zusammenfassung
A numerical scheme is presented for simulating electrokinetic microfluidics in systems with arbitrary morphology. This scheme is based on a numerical solution of the coupled Poisson, Nernst–Planck, and Navier–Stokes equations. While traditional finite-difference methods were used to resolve the first two problems, the lattice Boltzmann method was applied to the latter. The developed numerical approach was used for the simulation of electroosmotic flow through a simple cubic array of hard (impermeable, nonconducting) micro-sized spheres. Volumetric electroosmotic flow was studied for dependence on electrical field strength, ?-potential at the solid-liquid interface, electrical double layer interaction, and numerical grid resolution. Colloid stability and electrokinetics in microfluidic devices with particulate or monolithic fixed-bed elements represent two potential applications of this work. © Informa UK Limited, an Informa Group Company [accessed 2013 November 27th]