de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86340

Joshi,  M.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86195

Kremling,  A.
Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Joshi, M., Seidel-Morgenstern, A., & Kremling, A. (2006). Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems. Metabolic Engineering, 8(5), 447-455. doi:10.1016/j.ymben.2006.04.003.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-99EE-A
Abstract
A quantitative description of dynamical systems requires the estimation of uncertain kinetic parameters and an analysis of their precision. A method frequently used to describe the confidence intervals of estimated parameters is based on the Fisher-Information-Matrix. The application of this traditional method has two important shortcomings: (i) it gives only lower bounds for the variance of a parameter if the solution of the underlying model equations is non-linear in parameters. (ii) The resulting confidence interval is symmetric with respect to the estimated parameter. Here, we show that by applying the bootstrap method a better approximation of (possibly) asymmetric confidence intervals for parameters could be obtained. In contrast to previous applications devoted to non-parametric problems, a dynamical model describing a bio-chemical network is used to evaluate the method. 2006 Elsevier Inc. All rights reserved [accessed 2013 November 27th]