English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Active species on γ-alumina-supported vanadia catalysts : Nature and reducibility

MPS-Authors
/persons/resource/persons86363

Klose,  F.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

/persons/resource/persons86519

Wolff,  T.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86390

Lorenz,  H.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Klose, F., Wolff, T., Lorenz, H., Seidel-Morgenstern, A., Suchorski, Y., Piorkowska, M., et al. (2007). Active species on γ-alumina-supported vanadia catalysts: Nature and reducibility. Journal of Catalysis, 247(2), 176-193. doi:10.1016/j.jcat.2007.01.013.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-9896-7
Abstract
The oxidation states and reducibility of γ-alumina-supported vanadium oxide catalysts with V loadings between 1.7 and 15.7 wt% were studied by means of temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) for fresh as well as used catalysts. As additional experimental techniques, X-ray diffraction (XRD), diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS), and temperature-programmed desorption (TPD) were applied. For V loadings up to 6.1 wt%, the surface was found to be covered only by vanadate, while at higher loadings the formation of V2O5 crystallites was observed. The XPS and TPR data showed that under moderate oxidizing conditions, only ~30% of V in the vanadate catalysts was in the oxidation state +5, while in the catalysts containing V2O5 crystallites it was about 80%, with the remainder being present as V(IV) in both cases. In the ambient pressure TPR experiments, all catalysts were completely reduced by hydrogen to V(III), although the vanadate catalysts were found to be more easily reducible than those containing V2O5. The V dispersion changed during redox cycles, as they appeared under working conditions. These changes were different for the exposure to ethane or hydrogen, but did not influence the maximum oxidation states. In the catalytic oxidation of ethane used as a model reaction, all catalysts were found to be in their oxidized state under steady-state conditions. Significant catalyst reduction occurred only if the surrounding gas-phase oxygen was completely consumed, leading to the loss of catalytic activity due to the disappearance of V(V) species. A novel structure for γ-alumina-supported vanadia catalysts is proposed on the basis of the experimental data. Copyright © 2007 Elsevier Ltd. All rights reserved. [accessed 2013 November 26th]