de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pore-Scale Dispersion in Electrokinetic Flow through a Random Sphere Packing

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hlushkou, D., Khirevich, S., Apanasovich, V., Seidel-Morgenstern, A., & Tallarek, U. (2007). Pore-Scale Dispersion in Electrokinetic Flow through a Random Sphere Packing. Analytical Chemistry, 79(1), 113-121. doi:10.1021/ac061168r.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9873-6
Zusammenfassung
The three-dimensional velocity field and corresponding hydrodynamic dispersion in electrokinetic flow through a random bulk packing of impermeable, nonconducting spheres are studied by quantitative numerical analysis. First, a fixed bed with interparticle porosity of 0.38 is generated using a parallel collective-rearrangement algorithm. Then, the interparticle velocity field is calculated using the lattice-Boltzmann (LB) method, and a random-walk particle-tracking method is finally employed to model advection-diffusion of an inert tracer in the LB velocity field. We demonstrate that the pore-scale velocity profile for electroosmotic flow (EOF) is nonuniform even under most ideal conditions, including a negligible thickness of the electrical double layer compared to the mean pore size, a uniform distribution of the electrokinetic potential at the solid-liquid interface, and the absence of applied pressure gradients. This EOF dynamics is caused by a nonuniform distribution of the local electrical field strength in the sphere packing and engenders significant hydrodynamic dispersion compared to pluglike EOF through a single straight channel. Both transient and asymptotic dispersion behaviors are analyzed for EOF in the context of packing microstructure and are compared to pressure-driven flow in dependence of the average velocity through the bed. A better hydrodynamic performance of EOF originates in a still much smaller amplitude of velocity fluctuations on a mesoscopic scale (covering several particle diameters), as well as on the microscopic scale of an individual pore. © 2007 American Chemical Society [accessed 2013 November 26th]