de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

MINLP optimization of butyl acetate synthesis

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86298

Gangadwala,  J.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Gangadwala, J., & Kienle, A. (2007). MINLP optimization of butyl acetate synthesis. Chemical Engineering and Processing, 46, 107-118. doi:10.1016/j.cep.2006.04.009.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-9865-6
Abstract
The synthesis of butyl acetate by catalytic distillation has been studied using MINLP optimization. Two process alternatives are investigated, namely a reactive distillation column (RDC) and side reactors coupled with a non-reactive distillation column (SRC). The comparison is made with preliminary results obtained by a one parameter continuation method [1]. Important insights have been gained for a solution procedure of the optimization models. Significant improvements in the economic benefits have been observed in the optimized designs. For example, in terms of a reboiler heat duty 5% improvement in the RDC and 30% improvement in the SRC is noticed. In addition, a more rigorous optimization in terms of an overall operating and equipment cost is carried out. © 2006 Elsevier B.V. All rights reserved. [accessed 2013 December 4th]