de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Glycosylation of Influenza A Virus Hemagglutinin

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86475

Schwarzer,  J.
Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86442

Rapp,  E.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86448

Reichl,  U.
Otto-von-Guericke-Universität Magdeburg;
Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Schwarzer, J., Rapp, E., & Reichl, U. (2007). Glycosylation of Influenza A Virus Hemagglutinin. Poster presented at BioPerspectives 2007, Köln, Germany.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-97DA-6
Abstract
The envelope of influenza A is spiked with two glycoproteins: hemagglutinin (HA) and neuraminidase (NA). HA as the most abundant protein on the virus surface, triggers the strongest immunogenic response. Each HA monomer contains 3 to 9 N-linked glycans, depending on the virus strain. The functional role of these glycans is still not completely understood. However, previous glycosylation studies have shown that structural modifications of these glycans can influence virus attachment to the host cell, and therefore change viral replication dynamics and its immunogenicity. The glycosylation pattern of viral proteins is affected by the glycosylation machinery of the host cell and their cultivation conditions. Further modifications in the structure can occur during inactivation and downstream processing steps. Hence, monitoring and controlling the glycosylation pattern during the virus production process can be crucial to obtain maximum production yields and to guaranty the immunogenicity of the antigens. In this study the HA N-glycosylation pattern of cell culture derived influenza A virus strains is analyzed via the following procedure. The virus is concentrated and purified by “g-force-step-gradient-centrifugation” directly from cell culture supernatants. Afterwards viral proteins are separated by SDS-PAGE followed by enzymatical cleavage of HA N-glycans from the protein in gel with PNGase F. For monitoring by capillary gel electrophoresis with laser induced fluorescence (CGE-LIF), the N-glycan pool is labeled with 8-Aminopyrene-1,3,6-trisulfonic acid trisodium salt (APTS) by reductive amination. Fingerprints of HA N-glycan mixtures with a detection limit in the low femtomolar range allow a comparison of the HA N-glycosylation pattern of one influenza A virus strain produced under varied conditions (e.g. different cell lines like MDCK, VERO) as well as the comparison of the HA N-glycosylation pattern of different influenza A virus strains produced under similar conditions. Therefore, the method is a promising tool for monitoring the HA N-glycosylation pattern during the major steps of up- and downstream processing during the influenza virus vaccine production.