de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Robust control of robotic manipulators based on integral sliding mode

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86147

Bajcinca,  N.
Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shi, J., Liu, H., & Bajcinca, N. (2008). Robust control of robotic manipulators based on integral sliding mode. International Journal of Control, 81(10), 1537-1548. doi:10.1080/00207170701749881.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-969E-7
Zusammenfassung
For rigid body robot manipulators, the computed torque approach provides asymptotic stability for tracking control tasks. However, the state dependent matrices needed to complete the computed torque algorithm are normally unknown and possibly too complex for a real-time implementation. This paper proposes a simple controller with computed-torque-like structure enhanced by integral sliding mode, having pole-placement capability. For the reduction of the chattering effect generated by the sliding mode part, the integral sliding mode is posed as a perturbation estimator with quasi-continuous control action provided by an additional low-pass filter. The time-constant of the latter tunes the controller functionality between the perturbation compensation and a pure integral sliding mode control, as well as between chattering reduction and system robustness. A comparative simulation study between conventional sliding mode control, integral sliding mode control, and integral sliding mode in form of a perturbation estimator for a two-link robot arm validates the proposed design. copyright 2008 Taylor & Francis [accessed 2014 April 1st]