de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spatial Desynchronization of Glycolytic Waves as Revealed by Karhunen−Loeve Analysis

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86233

Straube,  R.
Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Bagyan, S., Mair, T., Suchorski, Y., Hauser, M. J. B., & Straube, R. (2008). Spatial Desynchronization of Glycolytic Waves as Revealed by Karhunen−Loeve Analysis. Journal of Physical Chemistry B, 112(45), 14334-14341. doi:10.1021/jp805087m.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-9694-C
Abstract
The dynamics of glycolytic waves in a yeast extract have been investigated in an open spatial reactor. At low protein contents in the extract, we find a transition from inwardly moving target patterns at the beginning of the experiment to outwardly moving spiral- or circular-shaped waves at later stages. These two phases are separated by a transition phase of more complex spatiotemporal dynamics. We have analyzed the pattern dynamics in these three intervals at different spatial scales by means of a Karhunen−Loève (KL) decomposition. During the initial phase of the experiment, the observed patterns are sufficiently described by the two dominant KL modes independently of the spatial scale. However, during the last stage of the experiment, at least 6 KL modes are needed to account for the observed patterns at spatial scales larger than 3 mm, while for smaller scales, 2 KL modes are still sufficient. This indicates that in the course of the experiment, the local glycolytic oscillators become desynchronized at spatial scales larger than 3 mm. Possible reasons for the desynchronization of the glycolytic waves are discussed. Copyright © 2013 American Chemical Society [accessed 2013 June 14th]