de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

An efficient numerical technique for solving multi-dimensional batch crystallization models with size independent growth rates

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86438

Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Dep. of Mathematics, Islamabad, Pakistan;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Qamar, S., & Seidel-Morgenstern, A. (2009). An efficient numerical technique for solving multi-dimensional batch crystallization models with size independent growth rates. Computers and Chemical Engineering, 33(7), 1221-1226. doi:10.1016/j.compchemeng.2009.01.018.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9381-8
Zusammenfassung
This article introduces an efficient numerical technique for solving multi-dimensional batch models. The method requires initial crystal size distribution (CSD) and initial solute mass. The initial CSD is used to calculate the initial moments as an initial data for the reduced moments system. The solution of the moments system coupled with an algebraic equation for the mass gives moments and mass at the discrete points of the computational time domain. These values are then used to get the discrete values of growth and nucleation rates. The discrete values of growth and nucleation rates along with the initial CSD are sufficient to get the final CSD. In the derivation of current technique the Laplace transformation of the population balance equation (PBE) plays an important role. The method is efficient, accurate and easy to implement. For validation, the results of the proposed scheme are compared with those from the high resolution finite volume scheme. Copyright © 2009 Elsevier Ltd All rights reserved. [accessed March 17, 2009]