de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optimal Design of Experiments for Parameter Identification of Ceramic Porous Membranes

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86528

Zhang,  F.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86397

Mangold,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86359

Kienle,  A.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, F., Mangold, M., & Kienle, A. (2009). Optimal Design of Experiments for Parameter Identification of Ceramic Porous Membranes. Chemical Engineering and Technology, 32(4), 641-649. doi:10.1002/ceat.200800544.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-935D-B
Zusammenfassung
Six different experimental schemes for mass transfer through porous membranes are compared for the efficiency with respect to parameter identification, namely dynamic single-gas permeation, dynamic multi-gas permeation, steady state single-gas permeation, steady state multi-gas permeation, transient diffusion and isobaric diffusion experiments. The comparison is made under optimal experimental conditions, which is obtained from optimal experimental design (OED) based on the Fisher information matrix. The covariance matrix of the parameters for each experimental scheme is estimated by the Cramér-Rao lower bound. To solve the optimization problems, a hybrid optimizer which combines a genetic algorithm and a gradient based algorithm is used. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [accessed April 22, 2009]