de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bivariate Extension of the Quadrature Method of Moments for Batch Crystallization Models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86438

Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Islamabad, Pakistan;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Qamar, S., Noor, S., ul Ain, Q., & Seidel-Morgenstern, A. (2010). Bivariate Extension of the Quadrature Method of Moments for Batch Crystallization Models. Industrial and Engineering Chemistry Research, 49(22), 11633-11644. doi:10.1021/ie101108s.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-90D2-A
Zusammenfassung
This Article presents a bivariate extension of the quadrature method of moments for solving two-dimensional batch crystallization models involving crystals nucleation, size-dependent growths, aggregation, and dissolution of small nuclei below certain critical size in a dissolution unit. In this technique, orthogonal polynomials of lower order moments are used to find the quadrature abscissas (points) and weights. Several benchmark problems with different combinations of processes are considered in this Article. The accuracy and efficiency of the proposed method are validated against the analytical solutions and the high-resolution finite volume scheme. Excellent agreements were observed in all test problems. It was found that the current method is very efficient and accurate as compared to the high-resolution finite volume scheme. copyright 2010 American Chemical Society [accessed November 18th, 2010]