de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Efficient solution of a batch crystallization model with fines dissolution

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86438

Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Islamabad, Pakistan;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Qamar, S., Mukhtar, S., & Seidel-Morgenstern, A. (2010). Efficient solution of a batch crystallization model with fines dissolution. Journal of Crystal Growth, 312(20), 2936-2945. doi:10.1016/j.jcrysgro.2010.06.026.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-90A3-3
Zusammenfassung
In this paper, an efficient and accurate numerical method is proposed for solving a batch crystallization model with fines dissolution. The dissolution of small crystals (fines dissolution) is useful for improving the quality of a product. This effectively shifts the crystal size distribution (CSD) towards larger crystal sizes and often makes the distribution narrower. The growth rate can be size-dependent and a time-delay in the dissolution unit is also incorporated in the model. The proposed method has two parts. In the first part, a coupled system of ordinary differential equations (ODEs) for moments and solute mass is numerically solved in the time domain of interest. These discrete values are used to get growth and nucleation rates in the same time domain. In the second part, the discrete growth and nucleation rates along with the initial CSD are used to construct the final CSD. The analytical expression for CSD is obtained by applying the method of characteristics and Duhamel's principle on the given population balance model (PBM). A Gaussian quadrature method, based on orthogonal polynomials, is used for approximating integrals in the ODE-system of moments and solute mass. The efficiency and accuracy of the proposed numerical method is validated by a numerical test problem. & 2010 ElsevierB.V. All rights reserved. [accessed September 20th, 2010]