Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt





A kinetic flux-vector splitting method for the shallow water magnetohydrodynamics


Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Islamabad, Pakistan;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Qamar, S., & Mudasser, S. (2010). A kinetic flux-vector splitting method for the shallow water magnetohydrodynamics. Computer Physics Communications, 181(6), 1109-1122. doi:10.1016/j.cpc.2010.02.019.

A kinetic flux-vector splitting (KFVS) scheme for the shallow water magnetohydrodynamic (SWMHD) equations in one- and two-space dimensions is formulated and applied. These equations model the dynamics of a thin layer of nearly incompressible and electrically conducting fluids for which the evolution is nearly two-dimensional with magnetic equilibrium in the third direction. The proposed numerical scheme is based on the direct splitting of macroscopic flux functions of the SWMHD equations. In two-space dimensions the scheme is derived in a usual dimensionally split manner; that is, the formulae for the fluxes can be used along each coordinate direction. The high-order resolution of the scheme is achieved by using a MUSCL-type initial reconstruction and Runge–Kutta time stepping method. Both one- and two-dimensional test computations are presented. For validation, the results of KFVS scheme are compared with those obtained from the space–time conservation element and solution element (CE/SE) method. The accuracy, efficiency and simplicity of the KFVS scheme demonstrate its potential in modeling SWMHD equations. © 2010 Elsevier B.V. All rights reserved. [accessed May 7,2010)