de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fast evaluation of periodic operation of a heterogeneous reactor based on nonlinear frequency response analysis

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86400

Markovic,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Petkovska, M., Nikolic, D., Markovic, A., & Seidel-Morgenstern, A. (2010). Fast evaluation of periodic operation of a heterogeneous reactor based on nonlinear frequency response analysis. Chemical Engineering Science, 65(11), 3632-3637. doi:10.1016/j.ces.2010.03.011.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-9057-2
Zusammenfassung
The concept of higher-order frequency response functions (FRFs), which is based on Volterra series representation of nonlinear systems, is used to analyse the time-average performance of a perfectly mixed reactor subject to periodic modulation of the inlet concentration, for a simple n-th order heterogeneous catalytic reaction. The second order frequency response function G2(ω,−ω), which corresponds to the dominant term of the non-periodic (DC) component, essentially determines the average performance of the periodic process. Thus, in order to evaluate the potential of a periodic operation, it is sufficient to derive and analyse the G2(ω,−ω) function. The sign of this function defines the sign of the DC component and reveals whether the periodic operation is favourable compared to conventional steady state operation, or not. It will be shown that, for the case investigated, the sign of this function depends both on the reaction order and on the shape of the adsorption isotherm. 2010 Elsevier Ltd. All rights reserved. [accessed May 7,2010]