de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Efficient and accurate numerical simulation of nonlinear chromatographic processes

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86338

Javeed,  S.
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86438

Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Dep. of Mathematics, Islamabad, Pakistan;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Javeed, S., Qamar, S., Seidel-Morgenstern, A., & Warnecke, G. (2011). Efficient and accurate numerical simulation of nonlinear chromatographic processes. Computers and Chemical Engineering, 35(11), 2294-2305. doi:10.1016/j.compchemeng.2010.10.002.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-8DC7-1
Zusammenfassung
Models for chromatographic processes consist of nonlinear convection-dominated partial differential equations (PDEs) coupled with some algebraic equations. A high resolution semi-discrete flux-limiting finite volume scheme is proposed for solving the nonlinear equilibrium dispersive model of chromatography. The suggested scheme is capable to suppress numerical oscillations and, hence, preserves the positivity of numerical solutions. Moreover, the scheme has capability to accurately capture sharp discontinuities of chromatographic fronts on coarse grids. The performance of the current scheme is validated against other flux-limiting schemes available in the literature. The case studies include single-component elution, two-component elution, and displacement chromatography on non-movable (fixed) and movable (counter-current) beds. © 2010 Elsevier Ltd. All rights reserved. [accessed October 5th 2011]