de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Constructing Extended Formulations from Reflection Relations

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons125782

Pashkovich,  Kanstantsin
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kaibel, V., & Pashkovich, K. (2011). Constructing Extended Formulations from Reflection Relations. In Integer Programming and Combinatoral Optimization (pp. 287-300).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-8DB5-7
Zusammenfassung
There are many examples of optimization problems whose associated polyhedra can be described much nicer, and with way less inequalities, by projections of higher dimensional polyhedra than this would be possible in the original space. However, currently not many general tools to construct such extended formulations are available. In this paper, we develop a framework of polyhedral relations that generalizes inductive constructions of extended formulations via projections, and we particularly elaborate on the special case of reflection relations. The latter ones provide polynomial size extended formulations for several polytopes that can be constructed as convex hulls of the unions of (exponentially) many copies of an input polytope obtained via sequences of reflections at hyperplanes. We demonstrate the use of the framework by deriving small extended formulations for the G-permutahedra of all finite reflection groups G (generalizing both Goeman's extended formulation of the permutahedron of size O(n log n) and Ben-Tal and Nemirovski's extended formulation with O(k) inequalities for the regular 2^k-gon) and for Huffman-polytopes (the convex hulls of the weight-vectors of Huffman codes). © Springer, Part of Springer Science+Business Media [accessed 2014 January 31st]