de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Recombinant protein purification using gradient assisted simulated moving bed hydrophobic interaction chromatography - Part II: Process design and experimental validation

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86424

Palani,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Indian Institute of Technology-Madras, Dep. of Biotechnology, Chennai, India;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Gueorguieva, L., Palani, S., Rinas, U., Jayaraman, G., & Seidel-Morgenstern, A. (2011). Recombinant protein purification using gradient assisted simulated moving bed hydrophobic interaction chromatography - Part II: Process design and experimental validation. Journal of Chromatography A, 1218(37), 6402-6411. doi:10.1016/j.chroma.2011.07.008.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-8D67-8
Abstract
In the first part of this work adsorption isotherm parameters were acquired to describe the migration of recombinant streptokinase in Butyl Sepharose columns at different salt concentrations. Based on these results, a simulated moving bed (SMB) chromatographic process was designed and realised, which exploits a two–step salt gradient and allows the continuous separation of streptokinase from contaminants present in a clarified E. coli cell lysate solution. This second part describes the design of the three-zone open-loop gradient SMB process applying both equilibrium theory and an equilibrium stage model and presents results of a series of experiments aiming to obtain pure streptokinase. Moreover, the potential of the SMB process and the design approach are evaluated. Copyright © 2011 Published by Elsevier B.V. [accessed September 1st 2011]