Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dynamics of Liquid-Liquid Systems Based on Linear Thermodynamics of Irreversible Processes

MPG-Autoren
/persons/resource/persons86241

Ahamed Imam,  Rayees
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86292

Freund,  Hannsjörg
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86497

Sundmacher,  Kai
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ahamed Imam, R., Freund, H., & Sundmacher, K. (2011). Dynamics of Liquid-Liquid Systems Based on Linear Thermodynamics of Irreversible Processes. Computers & Chemical Engineering, 35(4), 630-637. doi:10.1016/j.compchemeng.2010.06.015.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-8D0E-3
Zusammenfassung
The use of non-equilibrium models for integrated processes involving liquid–liquid systems has increased in recent years. These processes often exhibit complex dynamic behavior. These dynamical systems still pose many open questions, e.g. with regard to the sources of multiple steady states (MSS). This article analyzes the effect of mass transfer on the MSS of these systems. A ggeneralized non-equilibrium modeling approach based on linear thermodynamics of irreversible processes (LTIP) is presented, and the dynamics of the system is studied systematically. It is shown that the non-linearity present in even the simplest nonideal activity model acts as a source for MSS. The parameters that affect the solubility, e.g. temperature, can play a critical role on the existence of MSS in the system. A geometrical visualization of the MSS is also illustrated. Copyright © 2011 Elsevier B.V. All rights reserved. [accessed May 27th 2011]