Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Composition, Structure, and Mobility of Water−Acetonitrile Mixtures in a Silica Nanopore Studied by Molecular Dynamics Simulations

MPG-Autoren
/persons/resource/persons86407

Melnikov,  S. M.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Melnikov, S. M., Höltzel, A., Seidel-Morgenstern, A., & Tallarek, U. (2011). Composition, Structure, and Mobility of Water−Acetonitrile Mixtures in a Silica Nanopore Studied by Molecular Dynamics Simulations. Analytical Chemistry, 83(7), 2569-2575. doi:10.1021/ac102847m.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-8D0A-B
Zusammenfassung
To investigate the effect of the nanoscale confinement on the properties of a binary aqueous−organic solvent mixture, we performed molecular dynamics simulations of the equilibration of water−acetonitrile (W/ACN) mixtures between a cylindrical silica pore of 3 nm diameter and two bulk reservoirs. Water is enriched, and acetonitrile is depleted inside the pore with respect to the bulk reservoirs: for nominal molar (~volumetric) ratios of 1/3 (10/90), 1/1 (25/75), and 3/1 (50/50), the molar W/ACN ratio in the pore equilibrates to 1.5, 3.2, and 7.0. Thus, the relative accumulation of water in the pore increases with decreasing water fraction in the nominal solvent composition. The pore exhibits local as well as average solvent compositions, structural features, and diffusive mobilities that differ decidedly from the bulk. Water molecules form hydrogen bonds with the hydrophilic silica surface, resulting in a 0.45 nm thick interfacial layer, where solvent density, coordination, and orientation are independent of the nominal W/ACN ratio and the diffusive mobility goes toward zero. Our data suggest that solute transport along and across the nanopore, from the inner volume to the interfacial water layer and the potential adsorption sites at the silica surface, will be substantially different from transport in the bulk. Copyright © 2011 American Chemical Society [accessed April 15th 2011]