Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The space–time CE/SE method for solving ultra-relativistic Euler equations

MPG-Autoren
/persons/resource/persons86438

Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Islamabad, Pakistan;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Qamar, S., Yousaf, M., & Mudasser, S. (2011). The space–time CE/SE method for solving ultra-relativistic Euler equations. Computer Physics Communications, 182(4), 994-1004. doi:10.1016/j.cpc.2010.12.044.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-8D06-4
Zusammenfassung
This paper reports the application of space–time conservation element and solution element (CE/SE) method for solving one- and two-dimensional special ultra-relativistic Euler equations. For a sufficiently large internal energy of fluid particles the rest-mass energy of the fluid can be ignored. Then, the fluid flow can be modeled by ultra-relativistic Euler equations consisting a pair of coupled first-order non-linear hyperbolic partial differential equations. The governing equations describe the flow of a perfect fluid in terms of the particle density ρ, the spatial part of the four-velocity u and the pressure p. The CE/SE method is capable to accurately captures the sharp propagating wavefront of relativistic fluid without excessive numerical diffusion or spurious oscillations. In contrast to the existing upwind finite volume schemes, the Riemann solver and reconstruction procedure are not the building block of the suggested method. The method differs from the previous techniques because of global and local flux conservation in a space–time domain without resorting to interpolation or extrapolation. In order to reveal the efficiency and performance of the approach, several numerical test cases are presented in this manuscript. For validation, the results of current method are compared with other finite-volume schemes. Copyright © 2011 Elsevier B.V. All rights reserved. [accessed 27th May 2011]