de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Gaussian quadrature method for solving batch crystallization models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86438

Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Islamabad, Pakistan;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Qamar, S., Mukhtar, S., Ali, Q., & Seidel-Morgenstern, A. (2011). A Gaussian quadrature method for solving batch crystallization models. AIChE-Journal, 57(1), 149-159. doi:10.1002/aic.12264.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-8CD3-B
Zusammenfassung
The quadrature method of moments (QMOM) has been recently introduced for solving population balance models. In this article, an alternative approach of QMOM is proposed for solving batch crystallization models describing crystals nucleation, size-dependent growth, aggregation, breakage, and dissolution of small nuclei below certain critical size. In this technique, orthogonal polynomials, obtained from the lower order moments, are used to find the quadrature abscissas (points) and weights. Several test problems with different combinations of processes are considered in this manuscript. The numerical results are compared with analytical solutions and with the finite-volume scheme results. Excellent agreements were observed on the moment calculations in all test cases. © 2010 American Institute of Chemical Engineers