Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Vortrag

Modeling of Morphology Tranformations In Crystalline Materials: A Generalized Framework

MPG-Autoren
/persons/resource/persons86260

Borchert,  Christian
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86497

Sundmacher,  Kai
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Singh, M. R., Borchert, C., Sundmacher, K., & Ramkrishna, D. (2011). Modeling of Morphology Tranformations In Crystalline Materials: A Generalized Framework. Talk presented at 2011 AIChE Annual Meeting. Minneapolis, MN, USA. 2011-10-16 - 2011-10-21.


Zusammenfassung
This talk will present a generalized population balance model (PBM) to predict dynamic behavior of morphology (shape) transformations in populations of crystals. The model utilizes symmetry of crystal to reduce the degree of freedom in shape representations. The main crux of the model lies in its ability to describe the evolution of morphology distributions for any type of crystals in least possible dimensions (or dynamic variables). It will be shown subsequently that the dynamic behavior of morphology transformations for any crystalline material can be described by f-dimensional PBM, where f is the number of energetically favorable families of crystal planes.

The current problem carries immense opportunities for semiconductor, catalyst and pharmaceutical-based industries to produce crystals of desired shapes and shape-related properties. Many efforts have been made in past to understand the dynamics of crystal morphology at molecular level via various approaches like Phase-Field Modeling, Molecular Dynamics simulations, Monte Carlo simulations etc. However, their applications in determining the dynamics of morphology distributions are non-trivial due to the requirement of tremendous computational efforts. Conversely, the mechanistic models like PBMs are efficient in large scale applications as they require relatively less computational efforts and can give reasonably accurate results in no time. The talk will provide the recipe to formulate PBM for any type of crystalline material, which can be solved to predict the evolution of morphology distributions.

The generalized framework has the following few basic elements, which will be discussed thoroughly in the talk:

Identification of Maximum Degenerate State of a Crystal Shape.
Identification of Boundaries of Crystal State Space.
Developing Morphology Net.
Writing Multi-dimensional PBM.
Reduction to f-dimensional PBM.

This model provides the most efficient description for the morphology transformations in population of crystals, whose usefulness is quite apparent in different applications.