de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Parametric study of thermal effects in reactive liquid chromatography

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86338

Javeed,  S.
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86438

Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Dep. of Mathematics, Islamabad, Pakistan;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Javeed, S., Qamar, S., Seidel-Morgenstern, A., & Warnecke, G. (2012). Parametric study of thermal effects in reactive liquid chromatography. Chemical Engineering Journal, 191, 426-440. doi:10.1016/j.cej.2012.02.040.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-8A00-6
Abstract
This work is focused on modeling and simulation of non-isothermal reactive liquid chromatography. The model is formed by a system of convection–diffusion-reaction partial differential equations. The simulation of non-isothermal reactive chromatography is generally a challenging task for a numerical scheme due to the nonlinearity of the convection-dominated mass and energy balance equations and because of stiffness of the reaction terms. A high resolution finite volume scheme, recently developed for isothermal chromatography, is extended to solve the non-isothermal processes. The scheme is robust and gives high order accuracy on coarse grids, resolves sharp discontinuities, and avoids numerical dispersion which may lead to incorrect solutions. Although, thermal effects are typically neglected, the results of systematic parametric studies demonstrate that temperature gradients can significantly influence conversion and separation in reactive liquid chromatography. To validate the results, several consistency tests are carried out. The results prove the accuracy of the numerical scheme and quantify the relevant thermal effects. Copyright © 2012 Elsevier B.V. All rights reserved [accessed September 6th 2012]