Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Parametric study of thermal effects in reactive liquid chromatography

MPG-Autoren
/persons/resource/persons86338

Javeed,  S.
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86438

Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Dep. of Mathematics, Islamabad, Pakistan;

/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Javeed, S., Qamar, S., Seidel-Morgenstern, A., & Warnecke, G. (2012). Parametric study of thermal effects in reactive liquid chromatography. Chemical Engineering Journal, 191, 426-440. doi:10.1016/j.cej.2012.02.040.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-8A00-6
Zusammenfassung
This work is focused on modeling and simulation of non-isothermal reactive liquid chromatography. The model is formed by a system of convection–diffusion-reaction partial differential equations. The simulation of non-isothermal reactive chromatography is generally a challenging task for a numerical scheme due to the nonlinearity of the convection-dominated mass and energy balance equations and because of stiffness of the reaction terms. A high resolution finite volume scheme, recently developed for isothermal chromatography, is extended to solve the non-isothermal processes. The scheme is robust and gives high order accuracy on coarse grids, resolves sharp discontinuities, and avoids numerical dispersion which may lead to incorrect solutions. Although, thermal effects are typically neglected, the results of systematic parametric studies demonstrate that temperature gradients can significantly influence conversion and separation in reactive liquid chromatography. To validate the results, several consistency tests are carried out. The results prove the accuracy of the numerical scheme and quantify the relevant thermal effects. Copyright © 2012 Elsevier B.V. All rights reserved [accessed September 6th 2012]