de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

An attempt to alter the gas separation of mesoporous glass membranes by amine modification

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86494

Stoltenberg,  D.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Stoltenberg, D., & Seidel-Morgenstern, A. (2012). An attempt to alter the gas separation of mesoporous glass membranes by amine modification. Microporous and Mesoporous Materials, 154, 148-152. doi:10.1016/j.micromeso.2011.11.013.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-89D7-C
Zusammenfassung
Mesoporous glass membranes were synthesized and used to study the influence of an altered surface chemistry on adsorption and diffusion properties. A modification with a silane possessing high amine content was conducted to enhance the interaction with adsorbable gases. The obtained membranes were characterized by their adsorption equilibrium properties and their permeabilities for the gas pair carbon dioxide and nitrogen in single gas and binary mixture permeation experiments. The modified surface induced a reversal in the temperature dependence of the membrane selectivity. The strong adsorption on the modified surface led to a hindered carbon dioxide transport at lower temperatures and an accelerated transport at higher temperatures. Due to the limited amount of grafted adsorption sites on the modified membranes this effect was pronounced at low partial pressures of carbon dioxide. Copyright © 2011 Elsevier Inc. All rights reserved. [accessed December 7th 2011]