de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Seeding strategies and residence time characteristics of continuous preferential crystallization

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86438

Qamar,  S.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Dep. of Mathematics, Islamabad, Pakistan;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86282

Elsner,  M. P.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Georg Simon Ohm University of Applied Sciences, Nuremberg, Germany;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Qamar, S., Elsner, M. P., Hussain, I., & Seidel-Morgenstern, A. (2012). Seeding strategies and residence time characteristics of continuous preferential crystallization. Chemical Engineering Science, 71, 5-17. doi:10.1016/j.ces.2011.12.030.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-89BB-E
Zusammenfassung
This contribution investigates the effects of different seeding strategies and residence time characteristics on the dynamics of a Mixed Suspension Mixed Product Removal (MSMPR) crystallizer equipped with a fines dissolution unit. For the first time continuous preferential enantioselective crystallization is investigated. The fines dissolution is included as recycle streams around the MSMPR crystallizer. Moreover, primary heterogeneous and secondary nucleation mechanisms along with size-dependent growth rates are taken into account. A semi-discrete high resolution finite volume scheme (FVS) is employed for discretizing the derivatives with respect to the length coordinate. The resulting ordinary differential equations (ODEs) are solved by a Runge–Kutta method of order four. Several numerical case studies are carried out. The results support process design and optimization. Copyright © 2011 Elsevier Ltd. All rights reserved. [accessed January 19th 2012]